Now splitting the index into many parts.
Make a lookup table:
# strata.limits <- as.list(c("AllEPU" = AllEPU,
# "MABGB" = MABGB,
# "MABGBinshore" = MABGBinshore,
# "MABGBoffshore" = MABGBoffshore,
# "bfall" = bfall,
# "bfallnot" = bfallnot,
# "bfin" = bfin,
# "bfinnot" = bfinnot,
# "bfoff" = bfoff,
# "bfoffnot" = bfoffnot,
# "MABGBalbinshore" = MABGBalbinshore,
# "MABGBoffshorebigin" = MABGBoffshorebigin))
stratlook <- data.frame(Stratum = c("Stratum_1",
"Stratum_2",
"Stratum_3",
"Stratum_4",
"Stratum_5",
"Stratum_6",
"Stratum_7",
"Stratum_8",
"Stratum_9",
"Stratum_10",
"Stratum_11",
"Stratum_12"),
Region = c("AllEPU",
"MABGB",
"MABGBinshore",
"MABGBoffshore",
"bfall",
"bfallnot",
"bfin",
"bfinnot",
"bfoff",
"bfoffnot",
"MABGBalbinshore",
"MABGBoffshorebigin"))
Plot individual time series
splitoutput <- read.csv("pyindex/allagg_fall_500_lenno_split/Index.csv")
splitoutput <- splitoutput %>%
left_join(stratlook)
## Joining, by = "Stratum"
ggplot(splitoutput, aes(x=Time, y=Estimate, colour=Region)) +
geom_errorbar(aes(ymin=Estimate+Std..Error.for.Estimate, ymax=Estimate-Std..Error.for.Estimate))+
geom_point()+
geom_line()+
facet_wrap(~Region, scales = "free_y") +
guides(colour = guide_legend(ncol=2)) +
#theme(legend.position = c(1, 0),
# legend.justification = c(1, 0))
theme(legend.position="none")
or just the indices from inshore (alb), inshore bluefish, offshore bluefish, and further out
in2off <- splitoutput %>%
dplyr::select(Time, Region, Estimate) %>%
tidyr::pivot_wider(names_from = Region, values_from = Estimate) %>%
dplyr::mutate(AlbInshore = MABGBalbinshore,
BlueInshore = bfin,
BlueOffshore = bfoff,
OthOffshore = MABGB - (bfoff + bfin + MABGBalbinshore),
SumMABGB = AlbInshore + BlueInshore + BlueOffshore + OthOffshore) %>%
dplyr::select(Time, AlbInshore, BlueInshore, BlueOffshore, OthOffshore, SumMABGB, MABGB) %>%
tidyr::pivot_longer(!Time, names_to = "Region", values_to = "Estimate")
ggplot(in2off, aes(x=Time, y=Estimate, colour = Region)) +
geom_point()+
geom_line()+
#facet_wrap(~Region) + #+ , scales = "free_y"
#theme(legend.position = c(1, 0),
# legend.justification = c(1, 0))
ggtitle("Fall Prey Index, Mid-Atlantic and Georges Bank")
or as proportions (here proportion of MABGB index).
MABGBprop <- in2off %>%
#dplyr::filter(Region != "AllEPU") %>%
dplyr::select(Time, Region, Estimate) %>%
tidyr::pivot_wider(names_from = Region, values_from = Estimate) %>%
dplyr::mutate(AlbInshoreprop = AlbInshore/MABGB,
BlueInshoreprop = BlueInshore/MABGB,
BlueOffshoreprop = BlueOffshore/MABGB,
OthOffshoreprop = OthOffshore/MABGB) %>%
tidyr::pivot_longer(!Time, names_to = "Region", values_to = "Estimate") %>%
dplyr::filter(Region %in% c("AlbInshoreprop", "BlueInshoreprop", "BlueOffshoreprop",
"OthOffshoreprop"))
ggplot(MABGBprop, aes(x=Time, y=Estimate, colour = Region)) +
geom_point()+
geom_line()+
#facet_wrap(~Region) + #+ , scales = "free_y"
#theme(legend.position = c(1, 0),
# legend.justification = c(1, 0))
ggtitle("Fall Prey Index as proportion of Mid-Atlantic and Georges Bank")
## Spring
Plot individual time series
splitoutput <- read.csv("pyindex/allagg_spring_500_lenno_split/Index.csv")
splitoutput <- splitoutput %>%
left_join(stratlook)
## Joining, by = "Stratum"
ggplot(splitoutput, aes(x=Time, y=Estimate, colour=Region)) +
geom_errorbar(aes(ymin=Estimate+Std..Error.for.Estimate, ymax=Estimate-Std..Error.for.Estimate))+
geom_point()+
geom_line()+
facet_wrap(~Region, scales = "free_y") +
guides(colour = guide_legend(ncol=2)) +
#theme(legend.position = c(1, 0),
# legend.justification = c(1, 0))
theme(legend.position="none")
or just the indices from inshore (alb), inshore bluefish, offshore bluefish, and further out
in2off <- splitoutput %>%
dplyr::select(Time, Region, Estimate) %>%
tidyr::pivot_wider(names_from = Region, values_from = Estimate) %>%
dplyr::mutate(AlbInshore = MABGBalbinshore,
BlueInshore = bfin,
BlueOffshore = bfoff,
OthOffshore = MABGB - (bfoff + bfin + MABGBalbinshore),
SumMABGB = AlbInshore + BlueInshore + BlueOffshore + OthOffshore) %>%
dplyr::select(Time, AlbInshore, BlueInshore, BlueOffshore, OthOffshore, SumMABGB, MABGB) %>%
tidyr::pivot_longer(!Time, names_to = "Region", values_to = "Estimate")
ggplot(in2off, aes(x=Time, y=Estimate, colour = Region)) +
geom_point()+
geom_line()+
#facet_wrap(~Region) + #+ , scales = "free_y"
#theme(legend.position = c(1, 0),
# legend.justification = c(1, 0))
ggtitle("Spring Prey Index, Mid-Atlantic and Georges Bank")
or as proportions (here proportion of MABGB index).
MABGBprop <- in2off %>%
#dplyr::filter(Region != "AllEPU") %>%
dplyr::select(Time, Region, Estimate) %>%
tidyr::pivot_wider(names_from = Region, values_from = Estimate) %>%
dplyr::mutate(AlbInshoreprop = AlbInshore/MABGB,
BlueInshoreprop = BlueInshore/MABGB,
BlueOffshoreprop = BlueOffshore/MABGB,
OthOffshoreprop = OthOffshore/MABGB) %>%
tidyr::pivot_longer(!Time, names_to = "Region", values_to = "Estimate") %>%
dplyr::filter(Region %in% c("AlbInshoreprop", "BlueInshoreprop", "BlueOffshoreprop",
"OthOffshoreprop"))
ggplot(MABGBprop, aes(x=Time, y=Estimate, colour = Region)) +
geom_point()+
geom_line()+
#facet_wrap(~Region) + #+ , scales = "free_y"
#theme(legend.position = c(1, 0),
# legend.justification = c(1, 0))
ggtitle("Spring Prey Index as proportion of Mid-Atlantic and Georges Bank")